AD=AL1T WwYU DEFENSE MAPPING AGE'ICY AEROSPACE CENTER ST LOUIS AFS MO FrsG as»
MEASURLING THE FRACTAL DIMENSIONS OF tMPIRICAL CARTOGRAPHIC CURV—=ETC (
1982 % O SHELBERGY W WOELLFRIMG, 1, LAM
UHCLAGGTIRTED

ToNL
[ |




E
.’ mo
FEEEER EE E

EEEE
FEEE

g

e

. MICR(EOPY RESOLUTION TEST CHART _
NATIONAL BUREAY OF STANOARDS 1963-A




\\_UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Ddl“nmL - .
REPORT DOCUMENTATION PAGE oertEAD INSTRUCTIONS

. REPORY NUMBER

2. GOVY ACCESSION NOJ

4 TITLE (-ld Subtitle)

Measuring the Ftactal Dimensiona
of Empirical Cartographic Curves

) RECIPIENT'S CATALOG NUMBER

. TYPE OF REPORT & PERIOD COVERED

Cie eee - .=

6. PERFORMING ORG. REPORT NUMBER

7. AUTHON(®)

Mark C.:Shelberg . .
Harold Moellering R
Nina Lam

®. CONTRACT OR GRANT NUMBER(S)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Defense Mapping Agency Aerospace Center/CDCT
St. Louis AFS, MO 63118

vli. CONTROLLING OFFICE NA‘E AND ADDRESS
Defense Mapping Agency

12. REPORT DATEK

2nd & Arsenal Sts.,

St. Louis AFS, MO 63118
T4, MONITORING AGENCY NAME & AODDRESS(/{ different from Controiling Office)

R e
1. SECURITY CLASS. (of this report)

.

13. NUMBER OF PAGES

UNCLASSIFIED
8a. DECL ASHIFICATION/ DOWNGRADIN
SCHEDULE _

18. DISTRIBUTION STATEMENT (of this Report)

Unlimited

17. DISTRISUTION STATEMENT (of the abstract entered in Block 20, If different frem Repect) ‘ E i a

18. SUPPLEMENTARY NOTES

22-28 Augult 1982.

To be presented at the Auto-Carto 5/ISPRS IV Sywos:l\n, Crystal City, Virginia,

/

[957 KEY WORDS fCantinos on reveras side If necessary and identily by Biock mumber)

Fractal dimension, Chord lemgth, Line length, Linear regression

pﬁ. ABSTRACT (Continne on 7 side If

y and idontity by Sloek number)

curves.
solution steps used in computing fracticality.

sted. # Potential 1lications for this t
DD ,;5%% 1473 cormien of 1 nov o8 16 ossoLETE

The fractal dimension of a curve is a messure of its ;.ometric co-phuty and
can be any non~integer value between 1 and 2 depending’ upon the curve's level
of complexity. iThis paper discusses an algorithm, which simulates walking a
pair of dividers along a curve, used to calculate the fractal dimensions of
It also discusses the choice of chord length and the pumber of
Results demonstrate the
slgorithm to be stable and that a curve's fractal dimension can be closely

isclude .  (over)

T

S e & -

i
£




MEASURING THE FRACTAL DIMENSIONS
OF EMPIRICAL CARTOGRAPHIC CURVES

Mark C. Shelberg
Cartographer, Techniques Office
- Aerospace Cartography Department
Defense Mapping Agency Aerospace Center
St. Louis, AFS, Missouri 63118

Harold Moellering
Associate Professor
Department of Geography
Ohio State University
Columbus, Ohio #3210

£

‘ Nina Lam

'; Assistant Professor

‘ Department of Geography
Ohio State University
Columbus, Ohio 43210

Abstract 7
The £ dimension of a curve is a measure of its geometric complexity and
can be any teger value between 1 and 2 depending upon the curve’s level

of complexity. )This paper discusses an algorithm, which simulates walking a
pair of dividers along a curve, used to calculate the fractal dimensions of
curves. It also discusses the choice of chord length and the number of solution
steps used in computing fracticality. Results demonstrate the algorithm to be
stable and that a curve's fractal dimension can be closely approximated.
Potential applications for this technique include a new means for curvilinear

for description of surface feature

INTRODUCTION
The problem of describing the forms of curves has vexed researchers over the
years. For example, a coastline is neither » nor circular, nor elliptic and
therefore Euclidean lines cannot adquately most real world linear
features. atwh‘uduahﬂnmﬁ-msotcm«mnm
of complicated coastlines in terms of classical geometry. An lgdngeonoept

Mwm(nm,lmnwmm»mm caused by
the absence of suitable geometric representations. A fractal d\nnctorizu )
. - curves and surfaces in terms of their complexity by treating dimension as
continuum, Mwy.mumhwm«(lfamztam.
and 3 for volumes); however, fractal dimensions vaty anywhere between |

and 2 for a curve and 2 and 3 for a surface wonﬂnlrng\nrltyot
the form. mwmmm«mmu 1900's ,
Mandsibrot was the to recognizs their applications outside d

mathematics.
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DEFINITION OF FRACTALS AND SELP-SIMILARITY

In Euclidean every curve has a dimension of 1 and every plane has
dimension of mummmwuuwwmmx
These dimensions remain constant no matter how complex or irregular a curve
or plane may be. For example, the west coast of Great Britain contains many
irregularities, but the topological dimension remains 1.

In the fractal domain a curve’s dimension may be between | and 2

its complexity. Themmndnmdmmmﬂnmm
fractal dimension. Similarly, a plane’s dimension may be a non-integer value
between 2 and 3. The fractal dimension for any curve or surface is denoted by
(D) and within this framework: D >Dt. Mandelbrot (1977) proposes the
following definition for a fractal: “A Tractal will be defined as a set for which
the Hausdorff-Besicovitch dimension strictly exceeds the topological dimen-
sion." The precise definition of the Hausdorff-Besicovitch dimension can be
found in Besicovitch and Ursell (1937).

- Supposemmemmﬂ\ehngtho!ammdlvidenntnamlbed
step size (n) and counts the number of steps (N) it takes to approximate the
length. If a curve is a fractal, then its approaches infinity as (n) goes to
zero. With this nomenclature, Mark (1979) states the Hausdortf-Besocovitch
dimension of a curve is the absolute value of the slope (D) of a power function
N relating N (n) to n where n is a step size and the number of steps along the
curve, N (n) is counted. In summary, D is a measure of the complexity for any
curve or surface and all fractal sets are nowhere differentiable.

Central to the concept of fractals is the notion of seif-similarity. Self- il
similarity means that for any curve or surface a portion of the curve or surface :
can be considered a reduced image of the whole. However, seldom in nature _
(crystals are one exception) does self-similarity occur and therefore a statisti- .
' cal form of self-similarity is often encountered. In other words, if a curve or . ,
! surface is examined at any scale it will resemble the whole in a statistical ' s
1 sense; therfore, D will remain constant. Brownian motion is an excellent

example of statistical oelf-slmlhrlty. Becune thkprmdple,aqrvem be : "
decomposed into N=r nonoverlapping Wm.ma i %
1/r=1/N. Similarly, s unit bedlvided N squares, where the ! :
similarity ratio s r(N) = r:IN In either case the following equation - !
spplles = |
\ D= log N/log (1/¢) | m v
o and could be called the shape’s similarity dimension. D can also be expressed F '
' ’ ‘ as: _ o , ;
Dslog (N/N )/log (W/N) v ‘
r« ’ where s and )\ are two sampling intervals and N e { =
such intervals contained. If a curve resembles TE

A
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Richardson (1961) found the west coast of Britian to

over sampling intervals between 10 and 1000km., he found the

vary between 1.15 and 1.31 for & similar sampling interval. This suggests that
whatever created the ities on the coastline acted at specific scales.

approach, it would be unwise to reject the entire concept.

DEVELOPMENT OF THE FRACTAL CURVE ALGORITHM
AND EXTENSION OF THEORY

The following original ithm is based on the earlier empirical work
performed by Richardson (1961) and later extended by Mandelbrot (1967).
Richardson measured the of several frontiers by manually walking a pair
of dividers along the outline 30 as to count the number of steps. The opening of
the dividers (n) was fixed in advance and a fractional side was estimated at the
end of the walk. The main in this section of Richardson's research was
to study the broad variation of I with n.

Richardson produced a diagram in which he plotted log total length against log
step size and it is shown in Figure 1. Mandelbrot (1967) discovered a
relationship between the slope (8) of the lines and fractal dimension (D). To
Richardson the slope had no theoritical meaning, but to Mandelbrot it could be
used as an estimate of 1-D, which leads tot

D=1-g - (6))

The algorithm simulates walking a pair of dividers along a curve and counts the
number of steps. In cases where more than one intersection occurs, the
intersection which comes first in order forward along the curve is selected. To
be more accurate, step size (prescribed of the dividers) is called chord
length (cl) and the number of steps is calied the number of chord lengths.

In order to begin walking the dividers along the curve, the dividers must be set
to some opening. The curves used In this research are not infinitely subdivided
fractal curves so that selection of the initial chord length must be based on
some attribute of the curve. For a very contorted curve it would be
meaningless to choose a chord length many times smaller than the smallest line
segment. If an extremely small chord length is selected, an attempt to examine
the fractal character of a curve would extend beyond the primitive subelements
used to represent the of the resulting form. In other words, beyond
this lower limit of primitive subelements, the curve’s fractal dimension behaves
as if it is a straight line. A suggested Initial chord length is determined by
calculating the distance between each two consecutive points on the curve and
taking 1/2 the average distance. The average distance is divided by 2 because
the sampling theorem states one should sample at 1/2 the wavelength so that no
significant variation escapes.

the selection of the initial chord length. Although the accuracy of this method
is dependent on the manner in which the curve is digitized, the form of the
curve of ten dictates this manner.

After the initial chord length is determined, the algorithm computes the
distance between the first two points on the curve using the standard distance
formula. If the distance is greater than chord length (cl), a new point is

interpolated between points | and 2 using the following interpolation equations:
DP = (cl-DIST1) / (DIST1-DISTA) “
XNEW = X; + DP* (X,-X,) o)
YNEW = Y, +DP* (Y,-Y)) ©

This presents an approximate lower limit as to -

§ o
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where DP = distance proportion
DIST! = distance between the present point and the first forward
point on the curve
DISTA = distance between the present point and the second forward
point on the curve
XNEW = new X- coordinate
YNEW = new Y- coordinate
X,Y = X and Y coordinates of point 1 and 2,

Figure 2 demonstrates how a point is interpolated on a straight line segment.
If the distance is less than the chord length, the distance between points | and 3
(DISTC) is computed. If DISTC is greater than the chord it is known
that the chord length t intersects between points 2 and 3 and that the
distance between these points is determined (DISTB) See Figure 3a. The point
of intersection is computed using trigonometric functions. An angle C Is deter-
mined using the law of cosines.

-1 2 2 2
C=cos™" DISTB ¢DI§TA DISTC 0]
Since angle C is known, an angle A, which is the angle the chord length
intersects between points 2 and 3, can be computed.
A = SIN"! (DISTA#sin C)/cD) ®

Nowﬁuttwoanglesareh\own,anﬂeblseail;oomputed. Because angles A
and B are known, a side (DISTB') can be calculated; see Figure 3b.

DISTE = DISTA*sin B/sin B )

DISTB' provides the distance, from point 2, in which the chord length's
intersection is located on the segment between points 2 and 3. A distance

sides of may be longer. At the end of the curve, if the chord
is greater than DISTA, the portion of the remaining chord length is added

to the number of chord lengths.

After the dividers are walked along the curve with the initial chord the

dividers are opened to another distance. This distance is a geometric of

the first chord length. For example, if the initial chord Is 2, then the
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After each time the dividers are walked along the curve, the number of chord
lengths and the corresponding chord lengths are saved. These are used in the
linear regression where fog line length (number of chord lengths #*chord length)
is regressed against log chord length. A curve's fractal dimension is determined
by using equation 3.

To provide an indication of the proportn?\ of variance in the response variable
@xplained by the describing variable, r“ is computed. This value plays
important role in determining the optimum number of solution steps. A low ",
for example when the number of solution steps equals lz.ineans the initial
chord length falls below the primitive subelements. A low r® is determined by
decreasing the number of solution steps and comparing the two values. The
desirable number of solution steps is indicated when r” reaches its maximum
without the number of steps falling below 5. A linear regression with less than
5 points opens up some criticisms as to the validity of results and it should be
emphasized the linear regression is used as a paraneter estimate and not for
statistical inferences.

EXAMPLES AND RESULTS

Of the five land-frontiers Richardson measured, four have been point digitized
and used in this study. They are: coast of the Australian mainland; coast of
South Africa, starting from Swakopmund to Cape Sta. Lucia; frontier between
Spain and Portugal, moving south to north; and the west coast of Great Britain,
from Land’s End to Duncansby Head. Table 1 shows D as the result of
Richardson's measurements and the new D suggested by this research. The
expected discrepancy is the result of the digitization process because digitiza-
tion allows the capture of minute detail in a curve, and since these curves were
digitized at a larger scale, a higher D is anticipated.

Curve Slope (B) D(1-p New D
West Coast of Great Britain -.25 1.25 1.2671
The Coast of the Australian -.13 1.13 1.1890
Mainland
Cost of South Africa -.02 1.02 1.0356
Land-frontier between Spain -.1% 1.18 1.101%
and Portugal

Table 1. Result from Richardson's (1961) research, corresponding fractal
dimension and the new suggested fractal dimension.

For this paper, Kodiak Island is used to demonstrate how the fractal curve
algorithm operates. The curve wa. digitized in trace mode with delta minimum
and deita maximum variations at .002 and .05 respectively. The outline
contains 1633 points and is in Figure 5. The results from calculating D are in
Table 2 where the different initial chord ths are selected to show the
possible variations in D over a number of sampling intervals. The results show
D to vary from 1.1836 to 1.3714. These variations in D reflect a lack of self-
similarity in the curve.

The selection of an extremely short initial chord length of .01833 represents
examining the curve below its primitive subelements and biases D toward a
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straight line. The corresponding scatterplot in Figure 6 displays a curvature of
the data points resulting in a lower R-SQ. It is this type of curvature,
resembling the shape of a rainbow, that indicates the shortness of the chord
length. The chord length of .01833 is the average segment length and is
calculated by computing the distance between each two consecutive points on
the curve, summing the distances, and dividing by the number of segments.
The suggested D to represent the curve is 1.3105. The most appropriate D
value is determined from the minimum amount of curvaturz present in the
scatterplot resulting in the relatively high R-SQ value. The suggested initial
chord length of .03666 is still too small, indicated by the low R-5Q value, but
represents a starting point at which to determine D.

A thinned version of Kodiak Island is in Figure 7 and contains 1000 points. The
elimination of 653 points is accomplished with a program which deletes
excessive points within a certain chord length. Table 3 indicates D varying
between 1.214 and 1.3659. The comparison between the same chord length of
.05894 for the original and thinned islands displays how stable the algorithm is
to measure D. This initial chord length produced a D of 1.3105 (1653 points)
and 1.2949 (1000 points) giving a 1.19% difference. The D for the 1000 point
island is expected to be slightly lower because any data thinning process
normally removes some complexity from the feature. The proposed D for the
thinned island is approximately 1.2949 and the scatterplot is in Figure 8.

SUMMARY AND CONCLUSIONS

The results based on the previous empirical curves point out the importance of
selecting the appropriate initial chord length. A chord length whick is too short
is easily detected by either examining the amount of curvature present in the
scatterplot or the low R-SQ value. Normally, the suggested initial chord length
falls within this category, but it must be emphasized that this chord length is

. merely a beginning point. The ideal initial chord length, which produces the

most appropriate D, is selected by observing the behavior of the scatterplots,
R-SQ values, and the solution steps. This research, like Richardson's work,
indicates that from 5 to 8 solution steps are sufficient to determine the slope of
the regression line and thus fracticality.

The results also indicate the fractal curve algorithm to be stable, and that it is
able to closely approximate D. The variations in D, over a number of sampling
intervals, reflect a need to examine the effects of self-similarity, or lack of it
on a curve's fracticality. Finally, this research brings into focus the strong
problem solving capabilities, at the hands of cartographers, through the use of
interactive computer graphics.
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